Pokemon Generation One
Gotta train 'em all!
www.kaggle.com
Complete Pokemon Image Dataset
2,500+ clean labeled images, all official art, for Generations 1 through 8.
www.kaggle.com
import os
os.environ['KAGGLE_USERNAME'] = '아이디'
os.environ['KAGGLE_KEY'] = "배포받은 키"
# 데이터셋 다운로드
!kaggle datasets download -d thedagger/pokemon-generation-one
!kaggle datasets download -d hlrhegemony/pokemon-image-dataset
# 압축풀기
!unzip -q pokemon-generation-one.zip
!unzip -q pokemon-image-dataset.zip
# dataset 디렉토리를 train으로 이름을 변경
!mv dataset train
# images 디렉토리를 validation으로 이름을 변경
!mv images validation
- train 폴더안에 dataset이란 폴더가 중복해서 들어가있음
- rm(remove)함수 통해서 삭제. -rf 옵션은 디렉토리를 강제로(recursively) 삭제(해당 데이터가 없어도 에러나지 않게)
!rm -rf train/dataset
train_labels = os.listdir('train') # train 안에 들어있는 디렉토리를 리스트로 가져옴
print(train_labels) // ['Shellder', 'Squirtle', 'Muk', 'Charmeleon'...'Nidoqueen', 'Kabuto']
print(len(train_labels)) // 149
val_labels = os.listdir('validation')
print(val_labels) // ['Binacle', 'Fennekin', 'Golett' ... 'Huntail', 'Cutiefly']
print(len(val_labels)) // 898
# train: 149, validation: 898
# validation에서 train에 있는 디렉토리를 확인하여 없는 디렉토리를 모두 제거
import shutil
for val_label in val_labels:
if val_label not in train_labels:
shutil.rmtree(os.path.join('validation',val_label))
val_labels = os.listdir('validation')
len(val_labels) // 147
# validation이 147개가 됐음. train에 있는 2개 클래스가 없음
# 없는 클래스가 뭔지 확인해보고 파일에 사진 넣어주기
for train_label in train_labels:
if train_label not in val_labels:
print(train_label)
os.makedirs(os.path.join('validation', train_label), exist_ok=True)
// MrMime
Farfetchd
만들어진 MrMime 폴더와 Farfetchd 폴더에 사진 찾아서 넣어줌
val_labels = os.listdir('validation')
len(val_labels) // 149
# 필요한 모듈 준비
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from torchvision import datasets, models, transforms
from torch.utils.data import DataLoader
# GPU 사용 확인
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device) // cpu
# 이미지 증강기법 사용
# data_transforms
# train / validation
data_transforms = {
'train' : transforms.Compose([ # Compose : 한꺼번에 묶어서 실행
transforms.Resize((224,224)),
# (각도(처음 넣는 데이터라서 이름 생략), 찌그러뜨림, 크기(범위))
transforms.RandomAffine(0, shear = 10, scale=(0.8, 1.2)),
# 수평으로 뒤집기
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
]),
'validation' : transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()])
}
# 데이터셋 객체 생성
# image_datasets
# train / validation
image_datasets = {
# 키값 이름으로 데이터셋 객체가 만들어짐
'train': datasets.ImageFolder('train', data_transforms['train']),
'validation': datasets.ImageFolder('validation', data_transforms['validation'])
}
print(len(image_datasets['train']), len(image_datasets['validation']))
// 10657 663
# 데이터로더 생성
# dataloaders
# batch_size = 32
# shuffle=True
dataloaders = {
'train' : DataLoader(
image_datasets['train'],
batch_size=32,
shuffle=True
),
'validation': DataLoader(
image_datasets['validation'],
batch_size=32,
shuffle=False
)
}
# 이미지 4*8 로 출력
imgs, labels = next(iter(dataloaders['train']))
fig, axes = plt.subplots(4, 8, figsize=(20,10))
for img, label,ax in zip(imgs, labels, axes.flatten()):
ax.imshow(img.permute(1,2,0))
ax.set_title(label)
ax.axis('off')

- EfficientNetB4 모델 사용해보기
# 사전 학습된 EfficientNetB4 모델
# 원래는 이런 과정이 필요가 없지만, efficientnet 모델만 오류가 생겨서 이런 방식으로 해줌
from torchvision.models import efficientnet_b4, EfficientNet_B4_Weights
from torchvision.models._api import WeightsEnum
from torch.hub import load_state_dict_from_url
def get_state_dict(self, *args, **kwargs):
kwargs.pop("check_hash")
return load_state_dict_from_url(self.url, *args, **kwargs)
WeightsEnum.get_state_dict = get_state_dict
efficientnet_b4(weights=EfficientNet_B4_Weights.IMAGENET1K_V1)
model = efficientnet_b4(weights="DEFAULT").to(device)
# FC Layer 수정
# print(model)
for param in model.parameters():
param.requires_grad = False # 가져온 파라미터 (W, b)를 업데이트하지 않음
model.classifier = nn.Sequential(
nn.Linear(1792, 256),
nn.ReLU(),
nn.Linear(256, 149)
).to(device)
# 변화 확인
print(model)
EfficientNet(
(features): Sequential(
(0): Conv2dNormActivation(
(0): Conv2d(3, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): SiLU(inplace=True)
)
(1): Sequential(
(0): MBConv(
(block): Sequential(
(0): Conv2dNormActivation(
(0): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=48, bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): SiLU(inplace=True)
)
(1): SqueezeExcitation(
(avgpool): AdaptiveAvgPool2d(output_size=1)
(fc1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(fc2): Conv2d(12, 48, kernel_size=(1, 1), stride=(1, 1))
(activation): SiLU(inplace=True)
(scale_activation): Sigmoid()
)
(2): Conv2dNormActivation(
(0): Conv2d(48, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(stochastic_depth): StochasticDepth(p=0.0, mode=row)
)
.
.
.
(classifier): Sequential(
(0): Linear(in_features=1792, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=149, bias=True)
)
)
# train, test 한번에 돌리기
optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):
for phase in ['train', 'validation']:
if phase == 'train':
model.train()
else:
model.eval()
sum_losses = 0
sum_accs = 0
for x_batch, y_batch in dataloaders[phase]:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
y_pred = model(x_batch)
loss = nn.CrossEntropyLoss()(y_pred, y_batch)
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
y_prob = nn.Softmax(1)(y_pred)
y_pred_index = torch.argmax(y_prob, axis=1)
acc = (y_batch == y_pred_index).float().sum() / len(y_batch) * 100
sum_losses = sum_losses + loss
sum_accs = sum_accs + acc
avg_loss = sum_losses / len(dataloaders[phase])
avg_acc = sum_accs / len(dataloaders[phase])
print(f'{phase:10s}: Epoch {epoch+1:4d}/{epochs} Loss: {avg_loss:.4f} Accuracy: {avg_acc: .2f}%')
✔️ 학습된 모델 저장하기
# 학습된 모델 파일 저장
torch.save(model.state_dict(), 'model.pth') # 텐서플로우 : model.h5
✔️ 다시 불러올 때
model = models.efficientnet_b4()
model.classifier = nn.Sequential(
nn.Linear(1792, 256),
nn.ReLU(),
nn.Linear(256, 149)
)
model.load_state_dict(torch.load('/content/model.pth'))
# map_location=torch.device('cpu') : GPU에서 학습한 모델을 CPU에 로드할 때 써줘야함
model.eval()
# 학습 결과 확인
from PIL import Image
img1 = Image.open('/content/validation/Ditto/0.jpg')
img2 = Image.open('/content/validation/Charmander/0.jpg')
fig, axes = plt.subplots(1,2, figsize = (12, 6))
axes[0].imshow(img1)
axes[0].axis('off')
axes[1].imshow(img2)
axes[1].axis('off')
plt.show()

img1_input = data_transforms['validation'](img1)
img2_input = data_transforms['validation'](img2)
print(img1_input.shape) // torch.Size([3, 224, 224])
print(img2_input.shape) // torch.Size([3, 224, 224])
test_batch = torch.stack([img1_input, img2_input])
test_batch = test_batch.to(device)
test_batch.shape // torch.Size([2, 3, 224, 224])
# torch.topk 함수는 주어진 입력 텐서에서 상위 k개의 값과 그에 해당하는 인덱스를 반환하는 함수입니다.
y_pred = model(test_batch)
y_prob = nn.Softmax(1)(y_pred)
probs, idx = torch.topk(y_prob, k=3)
print(probs)
//tensor([[0.9906, 0.0028, 0.0019],
[0.8180, 0.1767, 0.0020]], grad_fn=<TopkBackward0>)
print(idx)
// tensor([[ 22, 18, 28],
[ 14, 127, 60]])
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
axes[0].set_title('{:.2f}% {}, {:.2f}% {}, {:.2f}% {}'.format(
probs[0, 0] * 100,
image_datasets['validation'].classes[idx[0, 0]],
probs[0, 1] * 100,
image_datasets['validation'].classes[idx[0, 1]],
probs[0, 2] * 100,
image_datasets['validation'].classes[idx[0, 2]],
))
axes[0].imshow(img1)
axes[0].axis('off')
axes[1].set_title('{:.2f}% {}, {:.2f}% {}, {:.2f}% {}'.format(
probs[1, 0] * 100,
image_datasets['validation'].classes[idx[1, 0]],
probs[1, 1] * 100,
image_datasets['validation'].classes[idx[1, 1]],
probs[1, 2] * 100,
image_datasets['validation'].classes[idx[1, 2]],
))
axes[1].imshow(img2)
axes[1].axis('off')
plt.show()

my_img = Image.open('/content/chung.jpg')
my_img_input = data_transforms['validation'](my_img)
my_batch = torch.stack([my_img_input])
my_batch = my_batch.to(device)
my_pred = model(my_batch)
my_prob = nn.Softmax(1)(my_pred)
val, idx = torch.topk(my_prob, 3)
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
axes[0].imshow(my_img)
axes[0].axis('off')
axes[1].set_title('{:2f}% {}, {:2f}% {}, {:2f}% {}'.format(
val[0, 0] * 100,
image_datasets['validation'].classes[idx[0, 0]],
val[0, 1] * 100,
image_datasets['validation'].classes[idx[0, 1]],
val[0, 2] * 100,
image_datasets['validation'].classes[idx[0, 2]],
))
src = image_datasets['validation'].classes[idx[0, 1]]
i = Image.open(f'validation/{src}/0.jpg')
axes[1].imshow(i)
axes[1].axis('off')
plt.show()

'AI' 카테고리의 다른 글
자연어 처리 진행 순서 (0) | 2024.01.19 |
---|---|
자연어 처리 개요 (0) | 2024.01.16 |
전이 학습 (0) | 2024.01.12 |
간단한 CNN모델 만들기 실습 (1) | 2024.01.11 |
CNN 기초 (0) | 2024.01.10 |